Physics Requirements for the LC Main Tracker

Marco Battaglia
UC Berkeley and CERN, Geneva

Backgrounds in Main Tracker

 \Leftrightarrow Managing PatRec in presence of accelerator induced background, also for low p tracks, may be a decisive feature for Main Tracker technology choice.

Tracker Occupancy in Multi-Jet Evts

Distance from closest track in

$$e^+e^- o W^+W^-$$
 at $\sqrt{s} =$ 200, 500, 3000, 5000 GeV

Neutron Background

- ◆ Neutrons produced in giant dipole resonance excitation, pseudo-deuteron mechanism and photo-pion reaction by spent beams, beamstrahlung (300 kW/BX), pair (260 GeV/BX) and radiative Bhabha (2100 GeV/BX) fluxes;
- lacktriangle Main source of neutrons reaching the TPC volume is pair dump and the estimated flux is $\simeq 15000~n$ BX⁻¹ for TESLA at 500 GeV.

ENERGY SPECTRUM FROM FLUKA SIMULATION

Hadron Identification

→ Although no golden channel is known, which dictates good hadron id at TeV-class LC, TPC dE/dx likely to provide only handle for hadron tags and a key input for electron id at low momenta;

 π/K Discrimination vs. p with TESLA TPC

 $B \to \pi \pi/B \to K\pi$ Separation Before/After DE/DX K ID

- \diamondsuit Important to review the relevance of K^0_s and Λ^0 to energy flow and tagging;
- \Leftrightarrow Kink detection may represent a crucial issue in GMSB models with decays such as $\tilde{\tau} \to \tau \tilde{G}$ and $\tilde{\mu} \to \mu \tilde{G}$ which can be characterised by decay length $c\tau$ of $\mathcal{O}(\mu m)$ $\mathcal{O}(m)$;

Heavy Particles in GMSB

- ♦ In Gauge-mediated Supersymmetry Breaking Models (GMSB), gravitino is LSP and due to its weak coupling, NLSP (neutralino or stau) is long-lived;
- $\Leftrightarrow \tilde{\tau}$ NLSP scenario with $\tilde{\tau} \to \tilde{G}\tau$ can be investigated in $e^+e^- \to \tilde{\tau}\tilde{\tau}$;
- ♦ signature is heavy long-lived charged particle traversing the whole detector,

 \rightarrow need to reject $\mu^+\mu^-$ background by particle id.;

Analysis pioneered at LEP using dE/dx and RICH in DELPHI:

LC able to measure c au important to estimate SUSY breaking scale using kinematics, dE/dx and TOF:

Momentum Resolution

Comparison of American and TESLA TPC designs

Higgs Mass Determination

 \Rightarrow Require resolution contribution from $\delta p/p^2$ to $M_{\ell\ell}^{recoil} <<$ compared to that from ISR and beamstrahlung and beam energy spread (0.1% at TESLA);

 \diamondsuit Momentum resolution is a key issue not only for the benchmark $\ell\ell$ recoil mass but also for di-jet invariant mass, providing ultimate mass resolution at LC.

SUSY along WMAP lines

 \Leftrightarrow Recent WMAP result on CDM density significantly bounds parameter space of constrained MSSM models such as the cMSSM and suggests scenarios with nearly degenerate slepton - χ^0 masses which provide cosmologically interesting DM densities:

Slepton Mass Determination

Momentum Distribution from $\tilde{\ell}\to\chi\ell$ for post-WMAP point A' with $\delta p/p^2=$ 0, 5×10^{-5} , 1×10^{-4}

♦ However, slepton mass reconstruction is only marginally affected by tracking resolution, while it significantly depend on the beamstrahlung, both at TeV-class and multi-TeV LC;

Masses from Momentum Endpoints

 $\Rightarrow e^+e^-$ collider expected to complement LHC in study of sleptons and gaugino, in particular determining LSP properties;

 \Rightarrow In cMSSM, recent WMAP CDM result tightly constrains parameters and suggests narrow strip in m_0 - $m_{1/2}$ plane extending to small slepton-LSP mass differences, corresponding to soft particle spectra;

$$E_{\ell}^{mx/mn} = \frac{1}{2} M_{\tilde{\ell}} \left(1 - \frac{M_{\tilde{\chi}_{1}^{0}}^{2}}{M_{\tilde{\ell}}^{2}} \right) \times \left(1 \pm \sqrt{1 - \frac{M_{\ell}^{2}}{E_{beam}^{2}}} \right)$$

Universal Extra Dimensions

- ◆ Extra dimensions are being actively explored as alternative schemes to solve hierarchy problem, with most of their realisations expected to give spectacular signals at LHC and LC;
- lacktriangle Universal Extra dimension models have all SM particles propagating in one or more compact extra dimensions; Kaluza Klein partners of SM particles have masses $\simeq nR^{-1}$ and identical spin and couplings to SM particles;
- ♦ Same KK-level degeneracy broken by radiative corrections, KK-parity conservation guarantees lightest KK state stable (generally $\gamma^{(1)}$, $\nu^{(1)}$);
- ♦ Typical signatures $Jets + E^{miss}$, $\ell + E^{miss}$ and spectra mimic SUSY raising the question of model differentiation at LHC, while they can be disentangled at LC.

- \Leftrightarrow UED offers viable CDM candidate as lightest stable KK particle, if this is responsible for WMAP Ωh^2 , then expect UED signals to be first observed at LHC;
- \Rightarrow At LC processes $e^+e^- \rightarrow e^{(1)}e^{(1)} \rightarrow e^+e^-\gamma^{(1)}\gamma^{(1)}$ and $e^+e^- \rightarrow \mu^{(1)}\mu^{(1)} \rightarrow \mu^+\mu^-\gamma^{(1)}\gamma^{(1)}$ offer clean detection of the $2\ell + E_{miss}$ states;
- \diamond Can determine spin of KK excitation and measure $\ell^{(1)}$ and $\gamma^{(1)}$ masses similarly to slepton analysis in SUSY;
- \diamondsuit Need to measure all lepton momentum endpoints to solve for $\ell^{(1)}$ and $\gamma^{(1)}$ masses

Lepton Momentum Distribution in UED $e^{(1)}$ and $\mu^{(1)}$ Production

 \Leftrightarrow Sensitivity to nearly degenerate $\ell^{(1)}$ and $\gamma^{(1)}$ states requires to extend efficiency of lepton tagging to $\mathcal{O}(1 \text{ GeV})$ momenta.